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We investigate asymptotic properties of certain discrete-time dynamical systems 
in two and three dimensions with solenoidal attractor. It is proved that the 
asymptotic measures, relevant for the generalized version of the ergodic theo- 
rem, all derive from one Haar measure. 
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INTRODUCTION 

Recently there has been considerable interest in simple low- 
dimensional dynamical systems, either continuous or discrete. Sometimes 
these systems show features which mimic physical phenomena like turbu- 
lence. Presently, most of our understanding of the complicated behavior of 
nonlinear models rests on computer experiments or on the analysis of the 
Lorenz model.(1-3) As seems widely accepted, it is very hard to generally 
describe chaotic behavior by analytical methods. 

In this paper we discuss a certain class of two-dimensional dissipative 
discrete-time models and give a detailed analytic description of their 
strange attractor. A prototype of these model systems was suggested by 
Kaplan and Yorke. (4) These authors performed computer experiments and 
used the results to support certain conjectures concerning the dimension of 
strange attractors in generalJ 5) Later Jensen and Oberman (6) studied the 
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stochastic behavior of the same model and calculated time averages of 
simple observables by the path integral method. Problems involving the 
long-time behavior of dissipative systems call for some kind of ergodic 
theorem, in complete analogy, as one hopes, to conservative systems of 
statistical mechanics. The validity of an extended ergodic theorem for 
dissipative systems is, however, a very difficult question. The only systems 
which one presently understands fairly well are the Axiom-A systems. Here 
Bowen and Ruelle (7'8) proved a generalized ergodic theorem by showing 
that there exists a probability measure supported by the attractor and 
invariant under the dynamics, such that the expectation of an observable 
coincides with its time average. 

But even for Axiom-A systems where existence is guaranteed it seems 
hopeless in most cases to find a simple analytic expression either for the 
measure or merely for the strange attractor supporting this measure. This is 
in sharp contrast to the situation in conventional statistical mechanics 
where Gibbs measures are abundant. 

In the following we confine the discussion to a class of models that can 
be traced to a compact Abelian group known as the solenoid of van 
Dantzig. (9'1~ In particular, the models as proposed by Kaplan and Yorke 
and a model by Smale (ll'12) belong to this class. The appearance of a group 
in the context of attractors looks somewhat mysterious but is basic to our 
discussion. Using this device we are able to relate asymptotic properties of 
our systems to harmonic analysis on this group. We shall find that these 
models, though not Axiom-A, are derived from an Axiom-A system by 
simple geometric projections. So the result of Bowen and Ruelle applies 
and a generalized ergodic theorem holds in the sense that the time average 
of an observable coincides with its Haar integral on the solenoid. It follows 
from the work of Sinai (~) that we need only show that the conditional 
measure on the unstable manifold as obtained from the Haar measure is 
absolutely continuous with respect to Lebesgue measure. Most striking is 
the appearance of almost periodic functions on the real line which, to our 
knowledge, has been overlooked before. To each model in our class there is 
a (possibly vector-valued) almost periodic function h mapping the reals 
onto a dense subset of the attractor. It may be said that this function 
completely characterizes the asymptotic behavior of the system. 

The paper is organized as follows: First, we introduce a simple 
two-dimensional dissipative discrete model: 

x' = 2 x 2 -  1, y'=x+Xy ( 0 < X <  1) 

Then we relate it to a model by Kaplan and Yorke and to a three- 
dimensional model of Smale. Using Williams' inverse limit construction we 
describe the strange attractor for the model of Smale in terms of a function 
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h on the solenoid S of van Dantzig. Knowing that the reals are densely 
embedded in S we restrict h to the reals and obtain 

h(t) = ~ ~%xp(~ri2-"t) 
n = 0  

We show that this defines a Fourier series with respect to the group S. It 
follows rather easily that h is continuous on S and therefore is an almost 
periodic function for this group. As a consequence, the attractors reflect 
topological properties of the solenoid. 

Next we discuss the Haar  measure on the group S which is given by 
the mean value on its continuous almost periodic functions. The function h 
allows us to carry this measure to the attractors of the other models. 

We briefly remind the reader that from a measure theoretic point of 
view the solenoid S is isomorphic to the (1/2,  1/2) Bernoulli-shift implying 
strong stochastic properties for our two-dimensional models. Finally we use 
Sinai's characterization of the asymptotic measures on Axiom-A attractors 
to show that the above measures as derived from the Haar  integral are 
indeed asymptotic measures. 

We are very much indebted to Professor D. Ruelle, who suggested to 
us investigating the relation of our models to Smale's solenoid. 

1. A SIMPLE MODEL 

Let T be the transformation of the plane defined by 

T(x,y) = (2x 2 - 1,x + Xy) (1.l) 

where 0 < ?t < 1. In contrast to the Henon map, (14) T is not invertible. Let 
us consider the strip f~ c N 2 defined by Ix[ < 1. Then ~2 is invariant under 
T, and so is its complement f~c. Now, the orbit 

(xn, yn) = Tn(x,y), n = 0 , 1 , 2  . . . .  (1.2) 

for initial values in f~c escapes to infinity, whereas, for (x 0, Y0)~ ~2, the 
orbit is trapped by any of the compact sets 

a~=((x,y):]xl<l,[yl<(1-X)-l+e}, e > 0  (1.3) 

This may easily be proved by an induction argument. Thus we restrict our 
attention to the domain f~0 containing the attractor A of the map T. Since 

a oD Tf~ 0D T2f~0D . . -  D A  (1.4) 

we have that 

= A T~ (1.5) 
n~>O 
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Fig. 1. 

@ \ @ 
The cylinder ~ and the strip f~ inside it. The map p projects points from the cylinder 

to the strip. 

2. A RELATED MODEL 

The map (1.1) suggests changing coordinates, 

x = cos 2~ru (2. l) 

and studying the related transformation 

7~(u, y)  = (2u, Xy + cos2~ru) (2.2) 

of the cylinder 0 = (R/Z)x R. The "chaotic" behavior of this model has 
been studied by Kaplan and Yorke. (4~ 

Because of the commutative diagram 

where p(u, y) = (cos 2~ru, y), 

P ) a  

the two models 

(2.3) 

are essentially the same. 
Notice, however, that p is a 2 :1  map since u and 1 - u are mapped onto 
the same x. The manifolds ~2 and a may be visualized in the three- 
dimensional Euclidean space of coordinates (x, y, z) where x = cos 2~ru and 
z -- sin 2~u such that a becomes part of the plane z -- 0, i.e., the part inside 
the cylinder x 2 + z 2 = 1 which we identify with ~ (see Fig. 1). 

We obtain the attractor A of T by studying first the attractor .d of 
and then projecting it onto the plane: A =pA. Let ~0 = P - l E 0 .  Then 

A A A 

T~ o C f~o and 
A n ^  

~ i=  O T fl 0 (2.4) 
n>~0 

3. A MODEL OF SMALE 

Another related model is obtained if we replace the real variable y by a 
complex variable v writing 

7~(u,v) = (2u, hv + e 2~'~ ) (3.1) 
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Fig. 2. The full torus wrapped around the finite cyclinderA~ 0. The map q projects points 
from the ring onto the cylinder. In particular, the attractor A on the cylinder is obtained by 
projecting the attractor of the Smale system. 

to define a transformation T of ~ = (~/7/) • C. Again, there is a commuta- 
tive diagram 

+ ~  I f  (3.2) 

q 

where the projection q is given by (q(u,v)= (u, Rev). The transformation 
(3.1) was introduced by Smale, (11)'3 who showed how its attractor may be 
identified with the dyadic solenoid of van Dantzig (9) provided 0 < X < 1/2. 
If D c C is the disk }v[ < (1 - X)~', then the full torus ~ o ~  (R/Z) • D 
contains the attractor A. Again, Tf~ 0 c rio and A = Nn>0Tn~2o . The finite 

A 

cylinder ~2 o is embedded inside the full torus (see Fig. 2). 

4. PREHISTORIES 

Given a point w o in ~]o we would like to know all possible prehistories. 
If 7 ~ were invertible, then the prehistory of any point would be unique. 
However, with the map uw-~2u (mod 1) being 2:1,  there is a doubling of 
possible prehistories at each time step. 

Following Williams (1s'~6~ we describe the set of prehistories by the 
inverse (or projective) limit 

X = l im X, (4.1) 

3 Smale uses coordinates ( O , r , s )  related to ours by the equations 0 = 2~ru, r + is = (1 - )t)v. 
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where X, = r 0 for n = 0, 1,2 . . . .  and  where the limit is taken with respect  
to the following sequence of maps :  

r f f 
X o ~ - - - - X I ~ - - - X 2 <  . . . (4.2) 

N o w  the inverse limit construct ion is a c o m m o n  tool for investigating 
attractors.  To  be more  specific,  X is the set of all sequences (w 0, w 1 . . . .  ) 
such that  ~n ~ X~ and T %  + l = % for all n. There  is a natural  way in which 
if induces a t rans format ion  ~- : X ~ X, i.e., 

, r ( w o , W  l , w  2 . . . .  ) = ( T w o , O ~ o , W  1 . . . .  ) (4.3) 

such that  the following d iagram commutes :  

X ~r ) riO 

X ">rio 
where ~r is the project ion onto  the zeroth componen t :  

, ,( ,Oo, ,o l ,  ,02 . . . .  ) = `0o 

(4.4) 

(4 .5 )  

The significance of this construct ion is that  ~- can be inverted: 

' r - l (w  o , w I . . .  ) = (`01, a~2 . . . .  ) (4.6) 

An immedia te  consequence is the invar iance of the set ~rX: 

T~rX = ~rTX = TrX (4.7) 

Now,  any invar iant  subset of r 0 has to be  a subset of the attractor.  Thus,  
~X c A. Even more  is true for our  construction:  

= (4 .8 )  

To have  precise equality here is certainly a p leasant  feature. I t  may  be 
proved  in the following way. Let  X n denote  the subset  of sequences 
(`00, w~ . . . .  ) ~ H k > ~ o X k  satisfying r = if`ok for k = 1 . . . .  , n (n >/ 1). I t  
is obvious that  to any point  `0o ~ T n f ~ o  there is a sequence (`00,`0~ . . . .  ) 

~ s n .  E X ". Thus  T%20 C ~rX n. By definition of the inverse limit, X = ["),,>~1 
This implies A = n 7~"r0 C qrX, which together  with ~rX c A proves  (4.8). 

We  study the a t t ractor  via the space of prehistories, X, canonical ly  
associated with r 0. i t  is impor tan t  to realize that, in principle, a point  on 
the a t t ractor  could have several prehistories. However ,  a little later we will 
show that  ~r : X - ~ , 4  is bijective if 0 < X < 1/2 .  
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5. THE SOLENOID 

We proceed to give a detailed description of the space of prehistories, 
X. Let (~00,~o I . . . .  ) E X with % = (un,v~). From (3.1) and (4.2) we infer 
that 

m - - n  

1)n = ~krn--nl)m "4" 2 2t k -  lexp(2~riu.+k) (5.1) 
k = l  

for all m > n. Since IXl < 1 and vm is bounded, we obtain in the limit as 
m---) m 

v,, = ~ )t %xp(2~riun+k + l) (5.2) 
k = 0  

This says that the prehistory of u 0 is sufficient to determine the prehistory 
of ~o 0. All prehistories of the variable u are obtained by considering the 
inverse limit 

S = l im  S, (5.3) 

where S, = N/7/ for  all n/> 0 and where the map S, ~ S,+l means multipli- 
cation by 2. S is called the (dyadic) solenoid. Our analysis showed that the 
canonical projection X ~  S,  {u , , vn}  ~-->{Un} is bijective with inverse given 
by (5.2). More interesting, the combined map 

S ~ X - - - > A  
(5.4) 

(u~ ~ (u .  ,v .}  ~ ( ~ o ,  Vo) 

is bijective provided 0 < X < 1/2. This follows by an induction argument. 
Suppose u. and v. have already been determined from u 0 and v 0. We show 
how to construct u.+l and v.+~. From (5.2) 

Iv. - e ~ " ~  < M(1 - x) 

There are two possibilities for un + 1 : 

1. u.+ 1 = u J 2 ,  

2. u.+l = (u. + 1)/2, 

Iv. - e'~'u"[ < A/(1 - x) 

[o n + e~riu" I < )k/(1 -- ~t) 

(5.5) 

Thus, v n belongs to one of the two disks. The centers of these disks are a 
distance 2 apart. If 0 < X < 1/2, then X(1 - X) -~ < 1 and the two disks do 
not intersect. Therefore, un+ 1 is uniquely determined and so is 

Vn+ 1 = ~t- I(V n -- e 2~iu'+') (5.8) 

The preceding argument clearly shows that ~r is invertible if and only 
if 7~: A ~  A is invertible, independent of the details of the transformation 

(5.6) 

(5.7) 
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7 ~. The situation may now be summarized as follows: 

1. 0 < X < 1/2, s ~ .4 is bijective 

2. 1/2 < )t < 1, s--~ A is surjective 

Thus, for X smaller than 1/2 the attractor of the Smale map is some sort of 
geometric picture in ~3 of the abstract solenoid. This geometric realization 
of the dyadic solenoid was discovered first by van Dantzig (9) and with 
slight modifications by Stepanov and Tychonov. (12) 

6. C O N T I N U I T Y  

Addition modulo one gives S n (which is R/Z) the structure of a 
complete topological group. As a subgroup of l-In>0Sn, the solenoid S is 
endowed with the structure of a complete topological group as well. By 
Tychonov's theorem, this group is compact and Abelian. The topology of S 
is the weakest for which the canonical projections S--~ S n are continuous. 

Note that the real line is densely embedded in the solenoid since the 
equations 

u~ = 2-~t (mod 1) (6.1) 

define a continuous injective homomorphism R ~ S, t ~-~ { u, ) whose image 
is dense in S. Let •, denote the reals with topology as subgroup of the 
solenoid. The topology of R, is weaker than the usual one and S may be 
considered the completion of ~ , .  In fact, S is a certain compactification of 
the real line (the Bohr compactification with respect to the module of 
continuous almost periodic functions having almost periods 2 n(17)) with 
uncountably many points "at infinity." A function f :  ~ , ~  C is continuous 
if and only if for any c > 0 there exist 8 > 0 and a positive integer n such 
that 2-~[x - x' I (mod 1) < ~ implies If(x) - f ( x ' ) l  < c, or equivalently if 
Ix - x'[ < 8 implies 

If(x) - f ( x ' +  m2n)l < c (6.2) 

for all m ~ ?7. Thus, the continuous functions on R, are precisely those 
continuous functions on R that are almost periodic with almost periods 2". 

Any continuous function on R, may be uniquely extended to a 
continuous function on S. We are interested in the map S ~ C, { u,} ~ v 0 
which characterizes the attractor. Its restriction to R, is the function 4 

h(t) = ~ X~exp(~ri2-~t) (6.3) 
n = 0  

4 The function h satisfies the functional equation h(2t) = h(t) + exp(27rit). 
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This function is reminiscent of the series 

~ncos/t~t, X/~ > 1 + 37r/2, /~ odd (6.4) 
n = 0  

that Weierstrass (18) introduced to demonstrate the existence of a nowhere 
differentiable continuous function. We wish to show that the function h(t) 
is continuous in a rather strong sense, i.e., with respect to the topology of 
R. .  In (6.3) we encounter a concrete example of an absolutely convergent 
Fourier series with respect to the group S. Let us recall some notions from 
harmonic analysis and let us apply them in our case, A character on S is a 
continuous homomorphism x : S - +  U(1) where U(1) is the multiplicative 
group of complex numbers with unit modulus. With respect to pointwise 
multiplication, the characters on S form a group S, the dual of S. The 
topology of S is that of uniform convergence on compact sets of S. Since S 
is compact as a whole, S is a discrete Abelian group. 

The next result states that the dual S of the solenoid is the additive 
group of dyadic rationals: Any character X on S, when restricted to N., is 
of the form 

x(t)  = exp(2~rirt), r = 2-"m (6.5) 

with n, m E 7/(n >/0) arbitrary. This may be shown as follows. The identity 
map R ~ ~ .  is continuous. Thus, any character on R. is a character on R, 
hence is of the form exp(27rirt), r E R. The character is continuous on ~ .  iff 
it is continuous at t = 0, i.e., for e > 0 there are 6 > 0 and n/> 0 such that 
Itl < a implies 

[e 2~rirt- e2~rirm2"[ < E ( 6 . 6 )  

for all m ~ Z. We use the triangle inequality and get 

IZ m - -  1] < 2c, z = e 2~rir2" (6.7) 

If c < 1, z = 1 and thus r2 n E 7/. Suppose a complex function f on the real 
line is represented as a series, 

f ( t )  = ~ f (r)e 2~ir' (6.8) 
r ~ S  

Then f is called the Fourier transform of f.  Note that the term "Fourier 
transform" is used here not in the traditional sense but rather with respect 

A 

to the dual pair (S ,S) .  The sum (6.8) is well defined for every real t if 
1 ^ f E L (S), that is to say, if 

~ .  If(r)[ < ~ (6.9) 
r E S  
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A standard and simple argument shows that f,  as inverse transform of an 
L I function, is continuous on R. and may thus be extended to a function 
on S. In particular, the function h as defined by the series (6.3) is 
continuous. 

The extension of a character X : R . ~  U(1) is straightforward. With 
r = 2 - ' m  we have that 

X(Uo, u I . . . .  ) = exp(27rimu,~) (6.10) 

We recall the construction of the space of prehistories, X. It carries the 
topologff of an inverse limit of spaces X,,  each homeomorl2hic to the full 
torus, f~0. Note also that the attractor of the Smale map, A, is embedded 
in 0 0. 

I .emma. If 0 < h < 1, the map S ~ X, { u,, } ~ (u n, v,, ) is a homeo- 
morphism. In particular, the map 

o:  S ~ - ~ ,  {u,} w-~(Uo,Vo) (6.11) 

is continuous. If 0 < h < 1/2, then o and 7 ~ : A ~_A are homeomorphisms. 

Proof. We already showed that the map S ~  X is bijective. Obvi- 
ously, its inverse is continuous. It remains to prove that S ~ X is continu- 
ous. For this it is necessary and sufficient that, for any n, v, is a continuous 
function of (Uo,Ul, . . . ) .  Since v, is given by an absolutely convergent 
Fourier series (5.2), it is indeed continuous. This proves the first part of the 
theorem. Assume now that 0 < h < 1/2. We already showed that o is 
bijective. It remains to prove that 0 -1 is continuous. If (u , ,v , )  E X, then 
(u,,,v,,) ~.,~ for each n. The inverse of 7 ~ on A, (u,~,v,,)~--~(u,,+l,V,,+O is 
given by the formulas (5.6)-(5.8). The construction involves two disks 
separated by a distance 211 - X(1 - X)- i] strictly greater than zero, so that 
u,+ 1 (and hence %+0  varies continuously with (u, ,v,) .  By induction, 
(Uo, %) ~ (un, v,) is continuous for all n proving that o -  1 is continuous. The 
second part of this lemma was proved in Ref. 19 using a similar argument. 

We conclude with some remarks about a class of models proposed by 
Kaplan and Yorke. (4) Suppose p is a complex function on the real line, 
periodic with period 1, p(u + 1) = p(u). Let us consider a transformation of 
(R/Z)  • C similar to the Smale map, 

u' = 2u 
(6.12) 

v' = ~v + p ( u )  

If p has an absolutely convergent Fourier series in the traditional sense, 

1)(U ) = ~ Cm e2"irimu, ~ [Cm[ < ~ (6.13) 
m ~ - - o o  m ~  - - o o  
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then most of our results carry over to this case. Again, there is a map from 
the solenoid onto the attractor that takes {u,) into (u0,%), % now being 
given by 

% = ~ cm)t%xp(2~rimu,+,)  (6.14) 

where the sum is over n , m  ~ Z with n/> 0. The next step would be to 
replace the equation (6.3) by 

h (t) = ~ em)t %xp(crim2 - "t) (6.15) 
J/q~ ?/ 

to obtain an absolutely convergent series representation for h. 

7. CONNECTEDNESS 

The solenoid S as the completion of R, is connected. Thus .~ as a 
continuous image of the solenoid is connected. Moreover, since the attrac- 
tors A and A are continuous images of .4, they are connected, too, which is 
not at all obvious if one looks at the computer pictures. (4) Also, a continu- 
ous image of the real line is dense in any of these attractors. To this we add 
the remark that the same is true for any attractor arising in the more 
complicated cases (6.12) provided (6.13) holds. However, the solenoid fails 
to be locally connected. Every neighborhood of a point in S contains a 
disconnected neighborhood homeomorphic to a direct product I x C, 
where I is an interval and C is Cantor's triadic set. This may be demon- 
strated as follows. Let (a,} be any point in S. A fundamental system of 
neighborhoods consists of sets U =  U.(e), �9 < 1/2. A point (u0,u 1 . . . .  ) 
E S belongs to U if [u. - a.[ < �9 Denote this interval of real numbers by 
I = I.  (�9 A homeomorphism between U and I x C is set up as follows. To 
(u 0, u I , . . .  ) E U there corresponds (u., c.) E I x C, where c. is defined by 
its base 3 expansion, 

oo 

c, = ~2 x.+~3 -~  (7.1) 
k ~ l  

with coefficients given by 

0, 0 < < 1/2 (7.2) 
Xk= 2, 1 / 2 <  u k <  1 

Recall that the Cantor discontinuum is the set of all members of the closed 
unit interval having a triadic expansion in which the digit one does not 
occur. Therefore, c, belongs to C and any point in C arises via (7.1) from a 
point in U. 



320 Mayer and Roepstorff 

If we now combine these results with those of the last section, we 
obtain: If 0 < X < 1/2, the attractor A has topological dimension one and 
is locally homeomorphic to an interval times the Cantor discontinuum. 
Though C has zero (one-dimensional) Lebesgue measure, there exist Cantor 
sets of nonzero Lebesgue measure. It is known that these sets might arise in 
a local structure analysis of attractors different from those discussed 
here.(23) 

The situation becomes rather complicated if the attractor is not a 
homeomorphic image of the solenoid. For instance, the attractors ,4 and A 
are merely locally homeomorphic to some quotient space I x C/~ where 

is an equivalence relation induced b y t h e  map S ~ A (respectively, A), 
Therefore, it remains unknown whether A and A are indeed locally discon- 
nected, though with some effort one proves that each straight line u = const 
meets A in a set hom2omorphic to C. Supported by computer experiments, 
we conjecture that A, A, and A are locally connected if 1/2 < X < 1 in 
contrast to the situation where X < 1/2. 

There are dynamical systems with globally disconnected attractors. 
For instance, the invertible transformation of the unit square 12, 

(2x, y /3 ) ,  0 < x < 1/2 

T(x, y)  = (2x-l,(y+2)/3), 1 / 2 < x < l  
(7.3) 

has I x C as its attractor. 

8. THE HAAR MEASURE 

For every compact group, one proves the existence and uniqueness of 
the normalized Haar measure. We shall devote this brief section to the 
construction of the Haar measure for the solenoid and shall demonstrate its 
significance later on. Suppose this measure---call it /~--has been con- 
structed. Then, with regard to the chain of maps S~A ~,4~A, we 
obtain images of /z that describe certain distinguished measures for the 
dynamical systems considered. We denote these measures n5, rh, and m. 
Each measure is supported by the corresponding attractor, hence it has 
rather large sets of measure zero and, for h < 1/2, it is not absolutely 
continuous with respect to Lebesgue measure. However, these measures will 
turn out to be invariant and ergodic. 

For any continuous function f :  R . ~  C we would write ffd~ to denote 
the Haar integral. As is well known from the theory of almost periodic 
functions,(~7) the Haar measure of the solenoid,/~, is given by the equation 

f fd~= rlimoo T-lfor f(t)dt (8.1) 
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The argument is simple and runs as follows. Since f is continuous, it is 
almost periodic and the mean (8.1) exists. Standard arguments show that 
the mean is translationally invariant: (8.1) assigns the same mean value t o f  
and fa where s  + a). This invariance already characterizes the 
Haar measure up to normalization. Obviously, fdl~ = 1. Thus, the mean of 
a function coincides with its Haar integral. 

As dynamical system, S has been assigned to a transformation ~-:S 
---> S such that a step backwards in time shifts the sequence (u, } E S, 

- ' ( u 0 ,  u,  . . . .  ) = ( u 1 , . 2  . . . .  ) (8 .2)  

This simply reflects our interpretation of { u, } as the prehistory of the event 
u0. A moment's reflection shows that r is a continuous automorphism of 
the group S and may also be defined as the unique extension of 

r : R , ~ , ,  t~-->2t (8.3) 

Then the desired property of the measure/~, invariance under r, follows 
directly from (8.1). 

To write down the corresponding formulas for the mean of a function 
A A 

within the dynamical systems (90,th, 7~), (~20,m, T), and (f~0,m, T) is 
straightforward: 

lim T-  ( d t f ( t , h ( t ) ) ,  f~C(f io)  (8.4) L . f  dr~= 1 r - - 
T--> oo J o  

dth= lim T - '  ( dt f ( t ,  Reh(t)}, f ~  C(a0) (8.5) 
T---> oo J 0  " z 

1 T fAfdm= lim T-  ( dt f(cos2~rt, Reh(t)), f ~ C(~2o) (8.6) 
T ~ o o  Jo 

Here [ denotes the fractional part of t. The invariance of these measures 
under 7 ~, 7 ~, and T, respectively, follows from the commutative diagrams 
(2.3), (3.2), and (4.4). 

For certain functions f E C(f~0) including all polynomials the invariant 
mean can easily be computed: 

f(x, y) fA f dm 

x,x"y (n >1 O) 0 
2x 2, 4xy 2 1 

2 y  2 ( 1  - -  } t2)  T M  1 

It is also straightforward to calculate correlation functions 
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for functions f g E C(00): 

;(u,,O 
b/ 

'D* 

g(u,v) 
u 2 - ~ / 1 2  
v kk(1 _ ka)- l 

Mayer and Roepstorff 

We will come back to these results later. Explicit formulas of this type have 
first been obtained by Jensen and Oberrnan. (6) 

9. EQUIVALENCE WITH A BERNOULLI SHIFT 

The solenoid S which plays a fundamental role in our analysis has 
been equipped with the Haar measure # and the automorphism r Disre- 
garding topology and group structure, (S,/z, r is a measure space together 
with a measure preserving transformation, hence an abstract dynamical 
system. We remark that this system is in fact Bernoulli, though we feel this 
is commonplace to the expert. The first step in our argument is this. To any 
(Uo,  U 1 . . . .  ) E S we assign a doubly infinite sequence ( . . .  u l , u  o,  

u I . . . .  ) where u n = 2"u 0 E R / g  if n > 0. The new sequence describes 
both past and future of the event u o (a time step on R/2~ means multiplica- 
tion by two). Now the transformation I- shifts the history in the obvious 
way 

0"u), = U n - , ,  U = ( . . .  , U _ , , U  o . . . .  ) (9.1) 

In a second step we define numbers a, ,  n ~ Z, 

o, O < u n < l / 2  
an=  1, 1 / 2 <  un<  1 

(9.2) 

Note that . a o a _  la 2a_3 . . . is the base-2 expansion of u 0. For positive n, 
the numbers a n uniquely determine the prehistory of u 0. We have thus 
found a correspondence between elements of S and doubly infinite se- 
quences ( . . .  a l , a o ,  a l ,  . . . ) of binary digits. This correspondence is 1 : 1 
except for those sequences {a,} which eventually become constant to the 
left, that is to say if u o is a dyadic rational. They form a set of measure zero. 
Again, 

0"a)n = a n _  1 (9.3) 

This is known as the two-sided Bernoulli (1/2,  1/2)-shift if 

B =  f i  {0,1) (9.4) 
n ~ - - ~  

is considered together with the direct product measure obtained from giving 
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the two elements (0, 1 } equal probability, 

p(0) =p(1)= 1/2 (9.5) 
We now show that this measure coincides with the Haar measure of the 
solenoid when transported to B. We argue that the Haar  measure /z is 
uniquely determined by its invariance under translations by group ele- 
ments. What is the group structure of B as induced by S? It is that of 
formal power series 

oo 

a =  ~, a,2" (9.6) 
n ~  I O O  

It is understood that series are added as though they might represent real 
numbers. Notice that the inverse of a finite real non-negative number exists 
and is infinite. For instance, the inverse of the number 1 is 

oo 

2" (9.7) 
n = 0  

The product measure P is specified by its values on cylinders, 

P { a : a, = r , ,  n ~ A } = H P(r , )  = 2-1AI (9.8) 
n@A 

where A is any finite subset of 7/and IAI is the number of elements in A. 
Call IAI the diameter of the cylinder. Translation by a group element b ~ B 
maps cylinders onto cylinders. Obviously, such a translation preserves the 
diameter, hence preserves the measure. This would no longer be true for a 
Bernoulli (p, 1 -p ) - sh i f t  i fp  v ~ 1/2. Suppose now that A is empty; then the 
cylinder is the entire space B and P ( B ) =  1 by (9.8). Thus P is the Haar  
measure on B. Since the lack of 1 : 1 correspondance between the measure 
spaces S and B stems from sets of measure zero, we may still regard S and 
B as the "same" from a measure-theoretic point of view. 

Since B and the attractor A of the Smale map are related by a 
measure-theoretic isomorphism, the system (A, rh, 7 z) is Bernoulli. By con- 
trast, the attractor A (and also A) is obtained from the Bernoulli system by 
a noninvertible map that transports the structure from B to A (respectively, 
A). In this case we do not know whether elimination of sets of measure zero 
can make B, A, and A isomorphic. However, the systems (A, n~, T) and 
(A, m, T)  are obviously mixing. 

To see how ~ is embedded in B, we write 

a( t )  = t =  ~ a,2" (9.9) 

for any t E ~+ and a ( t ) =  a ( - t )  - I  if - t  ~ ~+. It then follows that ~ is 
mapped onto the sequences ( . . .  a 1, a0, al,  �9 �9 �9 ) that eventually become 
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constant to the right. Again, these sequences form a set of measure zero. 
Consequently, the subgroup R, though dense in S has measure zero. 

We recall the measure-theoretic isomorphism between the (1/2,  1/2) 
Bernoulli system B and the unit square I 2 with planar Lebesgue measure. 
To the shift in B there corresponds the baker transformation. (2~ This is a 
map of I z that expands by a factor of 2 the horizontal coordinate (the 
variable u 0 of the solenoid) while it contracts the vertical coordinate by a 
factor 1/2. Let us now consider the conditional probability measure on the 
unstable manifold which is described by the interval 0 < u 0 < 1, as induced 
by the planar Lebesgue measure and the o-field of vertical strips in 12. 
Then, as is well known, one simply recovers the one-dimensional Lebesgue 
measure for the variable Uo. This observation is essential to the final step of 
our argument. 

10. ERGODICITY 

We saw that the attractors of our simple dissipative systems can be 
explicitly described by the almost periodic function h as defined in Section 
6. The same function allowed us to construct the measures (8.4) to (8.6). In 
this section we want to show that these measures describe the long-time 
behavior of our systems: the expectation value of any observable with 
respect to these measures equals its time average at least for almost all 
initial values in the basin of the attractor. 

Let us first recall a theorem of Bowen and Ruelle (7'8) which solves this 
problem for Axiom-A systems: 

Theorem. Let T:  M ~  M be an Axiom-A diffeomorphism of the 
compact manifold M with a strange attractor A. Then there exists on A an 
unique T-invariant ergodic measure/~ such that for almost all x in the basin 
U(A) of A and for all continuous functions f on U(A) 

n - 1  

lim __1 ~,  f(Tkx)=fAdl~f= (f)~ 
n ~ o e  /7 k = 0  

If c(k)= (g  o T k . f ) , -  (g)~,(f) ,  denotes the correlation function 
for the functions f and g in U(A), then 

Ic(k)[ < Ce-~ k 

with some fl > 0 and some constant C depending on f and g. 

The asymptotic measure /z above can be characterized in different 
equivalent ways, (21) the most convenient for our purposes being the follow- 
ing: (13) /z is the unique T-invariant measure on A which induces condi- 
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tional measures on its unstable manifolds absolutely continuous with re- 
spect to Lebesgue measure. 

Unfortunately we cannot apply these results immediately to our mod- 
els because none of them is Axiom-A. It is known, however, that model 
(3.1) of Smale can easily be extended to an Axiom-A system on the 
three-dimensional sphere with exactly the same strange attractor ~.(22) 
Using the results of Section 9 on the conditional measures induced by rh on 
the unstable manifolds of .~ we conclude that rh is indeed the asymptotic 
measure for the strange attractor _~. Correlation functions therefore decay 
exponentially fast for this system. 

It is now straightforward to prove similar properties for the measures 
rh and m on the attractors A and A, respectively. Let us give the argument 
in the case of measure rh. 

Let ~ ( A ) =  q(~o) be the projection of the solid torus ~0 onto the 
cylinder fL It is a neighborhood in the basin of the attractor A. Any 
continuous function f on U(A) defines a continuous function f on ~]0 
through f =  f o q. By the Bowen-Ruelle theorem we have for almost all 
2~fio 

n - 1  

lim _1 2 ?(Tk~)=fA-dm? (10.1) 
n-~oo rt k = 0  

But this can be written as 
n - - I  ^ 

lim 1 ~ f(~k(qX))=fAdrhf (10.2) 
n - + ~  I'/ k = 0  

where we used relation (3.2). 
This being true for almost all 2 in fi0 we get for almost all 2 in U(.4): 

n - 1  

lim 1 E f ( ~ k 2 )  =fA drh f (10.3) 
n - ~  n k = 0  

which we wanted to show. The same argument applies also to the measure 
m on attractor A of system (1.1). 

It is also easy to show that the correlation functions for both systems 
(1.1) and (2.2) decay exponentially fast, which agrees with our calculations 
in Section 8. 

Because the measures rh, rh, and m are explicitly known we can 
calculate all statistical properties of the above systems exactly. 

We emphasize that everything in this section was stated under the 
provision that the parameter ?~ is smaller than 1//2. What happens if 
)k/> 1/2 is not at all clear. We conjecture that even then the Haar measure 
of S, via the continuous surjection S ~  A, induces the correct asymptotic 
measure for the Smale model. 
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